DocumentCode :
2621214
Title :
Improving parameter space decomposition for the generalised Hough transform
Author :
Aguado, Alberto S. ; Montiel, M. Eugenia ; Nixon, Mark S.
Author_Institution :
Dept. of Electron. & Comput. Sci., Southampton Univ., UK
Volume :
3
fYear :
1996
fDate :
16-19 Sep 1996
Firstpage :
627
Abstract :
The generalised Hough transform extracts arbitrary objects by using a non-analytic model shape representation obtained from gradient direction information. The main drawback of this technique is the excessive computational burden because of the four-dimensional parameter space required when orientation and scale are unknown. We present a novel representation of a model shape defined by the geometric relationship given by the position of a collection of edge points. This representation avoids errors due to unreliable gradient direction information and is used to reduce the computational requirements by decomposing the four-dimensional parameter space into two two-dimensional sub-spaces. Experimental results show the efficacy of the new technique for extracting shapes from synthetic and real images
Keywords :
Hough transforms; edge detection; feature extraction; image representation; parameter estimation; computational requirements reduction; edge points position; experimental results; four-dimensional parameter space; generalised Hough transform; geometric relationship; gradient direction information; nonanalytic model shape representation; parameter space decomposition; real images; shape extraction; synthetic images; two-dimensional subspaces; Computer science; Data mining; Electronic mail; Equations; Geometry; Quantization; Shape; Solid modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 1996. Proceedings., International Conference on
Conference_Location :
Lausanne
Print_ISBN :
0-7803-3259-8
Type :
conf
DOI :
10.1109/ICIP.1996.560573
Filename :
560573
Link To Document :
بازگشت