DocumentCode :
2621274
Title :
Generation of matrices for determining minimum distance and decoding of cyclic codes
Author :
Shen, Katherine K. ; Wang, Chun ; Tzeng, Kenneth K. ; Ba-Zhong Shen
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Lehigh Univ., Bethlehem, PA, USA
fYear :
1994
fDate :
27 Jun-1 Jul 1994
Firstpage :
99
Abstract :
A simple method based on Newton´s identities and their extensions is presented for determining the actual minimum distance of cyclic codes. The method is also shown to be capable of producing results from the shifting method of van Lint and Wilson (1986). More significantly, it is shown that this method also provides a mechanism for generating the type of syndrome matrices needed by Feng-Tzeng´s algorithm for decoding cyclic and BCH codes up to their actual minimum distance
Keywords :
BCH codes; cyclic codes; decoding; matrix algebra; BCH codes; Feng-Tzeng´s algorithm; Newton´s identities; cyclic codes; decoding; matrices; minimum distance; shifting method; syndrome matrices; Binary codes; Computer science; Decoding; Error correction codes; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 1994. Proceedings., 1994 IEEE International Symposium on
Conference_Location :
Trondheim
Print_ISBN :
0-7803-2015-8
Type :
conf
DOI :
10.1109/ISIT.1994.394849
Filename :
394849
Link To Document :
بازگشت