DocumentCode :
2621288
Title :
Low complexity parallel multipliers for Galois fields GF((2n )4) based on special types of primitive polynomials
Author :
Paar, Christof
Author_Institution :
Inst. fur Exp. Math., Essen Univ., Germany
fYear :
1994
fDate :
27 Jun-1 Jul 1994
Firstpage :
98
Abstract :
This work is concerned with architectures for parallel multipliers with low complexity in finite fields of the type GF((2n)4) which are isomorphic to GF(2k), k=4n. The multiplier is based on a shortened version of the Karatsuba-Ofman algorithm (1963) and a special class of polynomials which improves the k2 complexity bound by 44%
Keywords :
Galois fields; computational complexity; digital arithmetic; parallel algorithms; parallel architectures; polynomials; Galois fields; Karatsuba-Ofman algorithm; complexity bound; finite fields; low complexity parallel multipliers; parallel architectures; primitive polynomials; Automata; Galois fields; Modular construction; Polynomials; Shift registers; Very large scale integration;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 1994. Proceedings., 1994 IEEE International Symposium on
Conference_Location :
Trondheim
Print_ISBN :
0-7803-2015-8
Type :
conf
DOI :
10.1109/ISIT.1994.394850
Filename :
394850
Link To Document :
بازگشت