DocumentCode :
2623803
Title :
Reduced-rank linear regression
Author :
Stoica, P. ; Viberg, M.
Author_Institution :
Syst. & Control Group, Uppsala Univ., Sweden
fYear :
1996
fDate :
24-26 Jun 1996
Firstpage :
542
Lastpage :
545
Abstract :
This paper considers the problem of maximum likelihood (ML) estimation for reduced-rank linear regression equations with noise of arbitrary covariance. An explicit expression for the ML estimate of the regression matrix is derived. A generalized likelihood ratio (GLRT) test as also proposed, for estimating the rank of the regression matrix. Computer simulations and numerical examples indicate the superiority of the proposed estimator, as compared to a traditional least-squares approach that does not exploit the reduced rank property in an optimal way
Keywords :
correlation methods; matrix algebra; maximum likelihood estimation; GLRT test; ML estimate; computer simulations; covariance; generalized likelihood ratio test; maximum likelihood estimation; reduced-rank linear regression; reduced-rank linear regression equations; regression matrix; truncated canonical correlation decomposition; Array signal processing; Control systems; Covariance matrix; Equations; Linear regression; Maximum likelihood estimation; Parameter estimation; Sensor arrays; State estimation; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal and Array Processing, 1996. Proceedings., 8th IEEE Signal Processing Workshop on (Cat. No.96TB10004
Conference_Location :
Corfu
Print_ISBN :
0-8186-7576-4
Type :
conf
DOI :
10.1109/SSAP.1996.534934
Filename :
534934
Link To Document :
بازگشت