DocumentCode :
26242
Title :
Synergetic Combination of LIMD With CHPD for the Production of Economical and High Performance \\hbox {MgB}_{2} Wires
Author :
Maeda, Munenori ; Hossain, M.S.A. ; Motaman, A. ; Jung Ho Kim ; Kario, A. ; Rindfleisch, M. ; Tomsic, Michael ; Shi Xue Dou
Author_Institution :
Dept. of Phys., Nihon Univ., Tokyo, Japan
Volume :
23
Issue :
3
fYear :
2013
fDate :
Jun-13
Firstpage :
6200704
Lastpage :
6200704
Abstract :
We propose an economical fabrication concept, the localized internal magnesium diffusion (IMD) method. Instead of using a single magnesium (Mg) rod in the center of a metal sheath tube, we use large-sized Mg particles (20-50 mesh) mixed well with cheap 97% crystalline boron powder to fill the metal sheath tube. After a repeated drawing process, the coarse Mg is elongated along the core wire axis of the metal sheath tube. Textured MgB2 grains are then formed during the sintering process. In the localized IMD process, however, there is still a need to improve the overall density. In order to increase the density of the composite, a modified cold high pressure densification (CHPD) technique has been applied before the reaction. It is found that the critical current density (Jc) of the sample made from large-sized Mg with crystalline boron powder and treated by CHPD is increased significantly, so that it is quite comparable with the Jc values of samples made from expensive small magnesium and nanosized amorphous boron powder. At 4.2 K and 8 T, the Jc value of the wire in this work with the cheapest starting materials reaches 10 000 A/cm2 , which is similar to reported values for samples made by the powder-in-tube and IMD processes with expensive nanosized amorphous boron powder. A possible mechanism is proposed, and the microstructure is analyzed to explain this interesting feature. The main goal of this work is to develop a novel and cost-effective fabrication technique by combining the localized IMD process with CHPD and using cheap crystalline boron powder to manufacture MgB2 superconductor wires with electromagnetic performance superior to that of low-temperature Nb-Ti superconductors.
Keywords :
critical current density (superconductivity); densification; diffusion; elongation; magnesium compounds; sintering; superconducting devices; wires (electric); MgB2; critical current density; crystalline boron powder; drawing process; electromagnetic performance; elongation; high performance magnesium boride wire; localized IMD process; localized internal magnesium diffusion method; magnesium particle; magnetic flux density 8 T; metal sheath tube; microstructure; modified cold high pressure densification technique; nanosized amorphous boron powder; single magnesium rod; sintering process; superconductor wire; temperature 4.2 K; Boron; Critical current density; Fabrication; Materials; Powders; Superconducting filaments and wires; Wires; Critical current density; crystalline boron; elongated Mg; localized diffusion;
fLanguage :
English
Journal_Title :
Applied Superconductivity, IEEE Transactions on
Publisher :
ieee
ISSN :
1051-8223
Type :
jour
DOI :
10.1109/TASC.2013.2238272
Filename :
6419780
Link To Document :
بازگشت