DocumentCode :
2625968
Title :
Invariant histograms and deformable template matching for SAR target recognition
Author :
Ikeuchi, Katsushi ; Shakunaga, Takeshi ; Wheeler, M.D. ; Yamazaki, Taku
Author_Institution :
Sch. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA
fYear :
1996
fDate :
18-20 Jun 1996
Firstpage :
100
Lastpage :
105
Abstract :
Recognizing a target in synthetic-aperture radar (SAR) images is an important, yet challenging, application of the model-based vision technique. This paper describes a model-based SAR recognition system based on invariant histograms and deformable template matching techniques. An invariant histogram is a histogram of invariant values defined by geometric features such as points and lines in SAR images. Although a few invariants are sufficient to recognize a target, we use a histogram of all invariant values given by all possible target feature pairs. This redundant histogram enables robust recognition under severe occlusions typical in SAR recognition scenarios. Multi-step deformable template matching examines the existence of an object by superimposing templates over potential energy field generated from images or primitive features. It determines the template configuration which has the minimum deformation and the best alignment of the template with features. The deformability of the template absorbs the instability of SAR features. We have implemented the system and evaluated the system performance using hybrid SAR images, generated from synthesized model signatures and real SAR background signatures
Keywords :
image matching; radar imaging; radar target recognition; synthetic aperture radar; SAR target recognition; background signatures; deformable template matching; geometric features; invariant histograms; model-based vision technique; multi-step deformable template matching; potential energy field; synthetic-aperture radar; Deformable models; Histograms; Image generation; Image recognition; Potential energy; Radar applications; Radar imaging; Robustness; Synthetic aperture radar; Target recognition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 1996. Proceedings CVPR '96, 1996 IEEE Computer Society Conference on
Conference_Location :
San Francisco, CA
ISSN :
1063-6919
Print_ISBN :
0-8186-7259-5
Type :
conf
DOI :
10.1109/CVPR.1996.517060
Filename :
517060
Link To Document :
بازگشت