DocumentCode :
2626118
Title :
Analysis of Particle Methods for Simultaneous Robot Localization and Mapping and a New Algorithm: Marginal-SLAM
Author :
Martinez-Cantin, Ruben ; de Freitas, Nando ; Castellanos, Jose A.
Author_Institution :
Dept. of Comput. Sci. & Syst. Eng., Zaragoza Univ.
fYear :
2007
fDate :
10-14 April 2007
Firstpage :
2415
Lastpage :
2420
Abstract :
This paper presents a new particle method, with stochastic parameter estimation, to solve the SLAM problem. The underlying algorithm is rooted on a solid probabilistic foundation and is guaranteed to converge asymptotically, unlike many existing popular approaches. Moreover, it is efficient in storage and computation. The new algorithm carries out filtering only in the marginal filtering space, thereby allowing for the recursive computation of low variance estimates of the map. The paper provides mathematical arguments and empirical evidence to substantiate the fact that the new method represents an improvement over the existing particle filtering approaches for SLAM, which work on the joint path state space.
Keywords :
Monte Carlo methods; SLAM (robots); maximum likelihood estimation; particle filtering (numerical methods); probability; robots; asymptotic convergence; joint path state space; marginal-SLAM; particle filtering; recursive computation; simultaneous robot localization and mapping; stochastic parameter estimation; Algorithm design and analysis; Computer science; Filtering; Filters; Maximum likelihood estimation; Monte Carlo methods; Robot localization; Robotics and automation; Simultaneous localization and mapping; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 2007 IEEE International Conference on
Conference_Location :
Roma
ISSN :
1050-4729
Print_ISBN :
1-4244-0601-3
Electronic_ISBN :
1050-4729
Type :
conf
DOI :
10.1109/ROBOT.2007.363681
Filename :
4209445
Link To Document :
بازگشت