DocumentCode :
2630982
Title :
Nonparametric Bayesian matrix completion
Author :
Zhou, Mingyuan ; Wang, Chunping ; Chen, Minhua ; Paisley, John ; Dunson, David ; Carin, Lawrence
Author_Institution :
Electr. & Comput. Eng. Dept., Duke Univ., Durham, NC, USA
fYear :
2010
fDate :
4-7 Oct. 2010
Firstpage :
213
Lastpage :
216
Abstract :
The Beta-Binomial processes are considered for inferring missing values in matrices. The model moves beyond the low-rank assumption, modeling the matrix columns as residing in a nonlinear subspace. Large-scale problems are considered via efficient Gibbs sampling, yielding predictions as well as a measure of confidence in each prediction. Algorithm performance is considered for several datasets, with encouraging performance relative to existing approaches.
Keywords :
Bayes methods; binomial distribution; filtering theory; matrix algebra; signal sampling; Gibbs sampling; beta-binomial process; large-scale problem; low-rank assumption; matrix column; nonlinear subspace; nonparametric bayesian matrix completion; Bayesian methods; Collaboration; Dictionaries; Mathematical model; Motion pictures; Sparse matrices; Strontium;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Sensor Array and Multichannel Signal Processing Workshop (SAM), 2010 IEEE
Conference_Location :
Jerusalem
ISSN :
1551-2282
Print_ISBN :
978-1-4244-8978-7
Electronic_ISBN :
1551-2282
Type :
conf
DOI :
10.1109/SAM.2010.5606741
Filename :
5606741
Link To Document :
بازگشت