DocumentCode :
2631891
Title :
A Particle Swarm Optimization Based on Improved Multi-Swarm and Analysis
Author :
Li, Minghua ; Liu, Quan ; Yao, Wangshu ; Chen, Ming
Author_Institution :
Coll. of Comput. Sci. & Technol., Soochow Univ., Suzhou
fYear :
2008
fDate :
18-20 June 2008
Firstpage :
30
Lastpage :
30
Abstract :
Based on the differentially perturbed velocity particle swarm optimization, an improved multi-swarm particle swarm optimization (MSPSO) is presented to improve the problem of the slow convergence and diversity loss. The algorithm makes the number of populations search at the same time in the same
Keywords :
particle swarm optimisation; diversity loss; improved multi-swarm particle swarm optimization; particle swarm optimization; slow convergence; Computer science; Convergence; Design optimization; Image processing; Iterative algorithms; Laboratories; Machine learning algorithms; Particle swarm optimization; Pattern recognition; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Innovative Computing Information and Control, 2008. ICICIC '08. 3rd International Conference on
Conference_Location :
Dalian, Liaoning
Print_ISBN :
978-0-7695-3161-8
Electronic_ISBN :
978-0-7695-3161-8
Type :
conf
DOI :
10.1109/ICICIC.2008.73
Filename :
4603219
Link To Document :
بازگشت