DocumentCode :
2634717
Title :
A Geometric Algebra approach to decomposition of apparent power in general polyphase networks
Author :
Lev-Ari, Hanoch ; Stankovic, Aleksandar M.
Author_Institution :
Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA
fYear :
2009
fDate :
4-6 Oct. 2009
Firstpage :
1
Lastpage :
6
Abstract :
In this paper we demonstrate that Geometric Algebra provides a natural conceptual framework for the construction of physically meaningful orthogonal decompositions of apparent power. We use the tools of geometric algebra to introduce an apparent power multivector that consists of four distinct grades: a scalar, a bivector, a pseudo-bivector, and a pseudo-scalar. These four components represent the (weighted) average and variance of certain equivalent conductance and susceptance parameter sets.
Keywords :
Algebra; Circuits; Conductors; Frequency; Nonlinear distortion; Power system harmonics; Reactive power; Time domain analysis; Voltage; Wires; Apparent Power; Geometric Algebra; Harmonics; Multivectors; Polyphase Networks; Reactive Power;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
North American Power Symposium (NAPS), 2009
Conference_Location :
Starkville, MS, USA
Print_ISBN :
978-1-4244-4428-1
Electronic_ISBN :
978-1-4244-4429-8
Type :
conf
DOI :
10.1109/NAPS.2009.5484031
Filename :
5484031
Link To Document :
بازگشت