Title :
Low-Power Low-Energy Prime-Field ECC Processor Based on Montgomery Modular Inverse Algorithm
Author :
Ahmadi, Hamid Reza ; Afzali-Kusha, Ali
Author_Institution :
Sch. of Electr. & Comput. Eng., Univ. of Tehran, Tehran, Iran
Abstract :
In this paper, we present a fast low-power low-energy standard public-key cryptography processor for use in power/energy-limited applications. The proposed prime-field elliptic-curve cryptography hardware uses a modified Montgomery modular inverse algorithm to minimize the total calculation time and is completely flexible in terms of the field and curve parameters. The power consumption is minimized by simplifying the architecture and circuit implementation. To assess the power/energy and timing efficiency of the design, we have implemented the processor for 192-bit prime fields using a standard 0.13 ¿m CMOS technology. The simulation results show that the processor consumes only 39.3 ¿W/MHz which is lower than the power consumption reported for similar designs. Our proposed hardware completes one 192-bit scalar multiplication in 0.525s at a frequency of 1 MHz, consuming only 20.63 ¿J. With these specifications, the proposed processor may be used in many applications of wireless sensors and RFID tags.
Keywords :
CMOS integrated circuits; coprocessors; low-power electronics; public key cryptography; 192-bit scalar multiplication; CMOS technology; Montgomery modular inverse algorithm; RFID tags; energy 20.63 muJ; frequency 1 MHz; low-energy prime-field ECC processor; low-energy standard public-key cryptography processor; low-power prime-field ECC processor; low-power standard public-key cryptography processor; power consumption; prime-field elliptic-curve cryptography hardware; size 0.13 mum; timing efficiency; wireless sensors; CMOS process; CMOS technology; Circuit simulation; Elliptic curve cryptography; Energy consumption; Frequency; Hardware; Public key cryptography; Timing; Wireless sensor networks; crypto-processor; elliptic-curve cryptography; low-energy; low-power;
Conference_Titel :
Digital System Design, Architectures, Methods and Tools, 2009. DSD '09. 12th Euromicro Conference on
Conference_Location :
Patras
Print_ISBN :
978-0-7695-3782-5
DOI :
10.1109/DSD.2009.140