Title :
Robust background image generation and vehicle 3D detection and tracking
Author :
Zhang, Yufang ; Shi, Peijun ; Jones, Elizabeth G. ; Zhu, Qiuming
Author_Institution :
Dept. of Comput. Sci., Nebraska Univ., Omaha, NE, USA
Abstract :
This research includes two parts: (1) background image generation for vehicle detection, (2) vehicle 3-dimensional (3D) shape recovery and vehicle tracking. In the first part, "background subtraction" approach is used to detect vehicles in the images. The problem of background image generation is modeled as a mixture of Gaussian distributions and our goal is to separate the background data from other components in the image. A median model is presented as the background image generation method. The second part proposes a size-difference method to recover the vehicle 3D parameters. Vehicle tracking at typical street blocks and intersections is done based on the combination of vehicle features, such as the 3D parameters and pixel intensity statistics.
Keywords :
Gaussian distribution; feature extraction; image motion analysis; object detection; road vehicles; Gaussian distributions; background subtraction; image components; image pixel intensity statistics; median model; robust background image generation method; size difference method; vehicle 3D detection; vehicle 3D parameter recovery; vehicle 3D shape recovery; vehicle 3D tracking; vehicle features; Cameras; Educational institutions; Gaussian distribution; Image generation; Layout; Robustness; Shape; USA Councils; Vehicle detection; Vehicles;
Conference_Titel :
Intelligent Transportation Systems, 2004. Proceedings. The 7th International IEEE Conference on
Print_ISBN :
0-7803-8500-4
DOI :
10.1109/ITSC.2004.1398864