DocumentCode :
2640205
Title :
Identifying machine query for an intelligent web browser system
Author :
Zhu, Tingshao ; Xu, Xinguo ; Liu, Guohua
Author_Institution :
Grad. Univ. of Chinese Acad. of Sci., Beijing, China
fYear :
2010
fDate :
16-17 Aug. 2010
Firstpage :
108
Lastpage :
113
Abstract :
This paper describes our research on learning browsing behavior model for predicting the current information need of a web user. This inference is based on a parameterized model of how the sequence of browsing behavior indicates the degree to which page content satisfies the user´s information need, and the model parameters can be estimated using standard methods from a labelled corpus. Data from lab experiments demonstrate that the prediction model can effectively identify the information needs of new users, browsing previously unseen pages. The paper concludes with an overview of our WebIC which integrates the model into a web browser, to help the user find the relevant information effectively from the web.
Keywords :
learning (artificial intelligence); online front-ends; query processing; WebIC; inference; intelligent Web browser system; machine learning; machine query; parameterized model; web user; Browsers; Data models; Feature extraction; Predictive models; Search engines; Testing; Training; Browsing Behavior Model; Machine Learning; Web Browser;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Web Society (SWS), 2010 IEEE 2nd Symposium on
Conference_Location :
Beijing
Print_ISBN :
978-1-4244-6356-5
Type :
conf
DOI :
10.1109/SWS.2010.5607470
Filename :
5607470
Link To Document :
بازگشت