DocumentCode :
2641967
Title :
Evolutionary computing for optimizing type-2 fuzzy systems in intelligent control of non-linear dynamic plants
Author :
Castillo, Oscar ; Huesca, Gabriel ; Valdez, Fevrier
Author_Institution :
Dept. of Comput. Sci., Tijuana Inst. of Technol., Mexico
fYear :
2005
fDate :
26-28 June 2005
Firstpage :
247
Lastpage :
251
Abstract :
We describe in this paper the use of evolutionary computing techniques for optimizing the design of intelligent controllers. Genetic algorithms can be used to optimize the topology of a fuzzy system for control. We are considering type-2 fuzzy logic for intelligent control and as a consequence the task of designing the fuzzy system is more difficult. We use hierarchical genetic algorithms because the problem of fuzzy system optimization requires a hierarchical chromosome for representing the information about membership functions and parameters.
Keywords :
control system synthesis; fuzzy control; fuzzy logic; fuzzy systems; genetic algorithms; hierarchical systems; intelligent control; nonlinear dynamical systems; evolutionary computing; hierarchical chromosome; hierarchical genetic algorithm; intelligent control; intelligent controller design optimization; nonlinear dynamic plant; type-2 fuzzy logic; type-2 fuzzy system; Automatic control; Control systems; Fuzzy control; Fuzzy logic; Fuzzy sets; Fuzzy systems; Genetic algorithms; Intelligent control; Nonlinear dynamical systems; Topology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Information Processing Society, 2005. NAFIPS 2005. Annual Meeting of the North American
Print_ISBN :
0-7803-9187-X
Type :
conf
DOI :
10.1109/NAFIPS.2005.1548542
Filename :
1548542
Link To Document :
بازگشت