Author :
Goux, L. ; Sankaran, K. ; Kar, G. ; Jossart, N. ; Opsomer, K. ; Degraeve, R. ; Pourtois, G. ; Rignanese, G.-M. ; Detavernier, C. ; Clima, S. ; Chen, Y.-Y. ; Fantini, A. ; Govoreanu, B. ; Wouters, D.J. ; Jurczak, M. ; Altimime, L. ; Kittl, J.A.
Abstract :
We optimize a 90nm-wide CuTe-based 1T1R CBRAM cell for highly controlled and ultrafast programming by engineering Al2O3 electrolyte and Ti buffer layers of appropriate density and thickness resp. By means of electrical and ab initio modeling, we demonstrate that switching is mainly controlled by field-driven motion of Cu+ species. Sub-ns programming is allowed by strong ionic-hopping barrier reduction over short insulating gap. Complete picture of conductance and switching phenomenology is shown in the entire operation range.
Keywords :
alumina; copper compounds; random-access storage; titanium; tungsten; 1T1R CBRAM cell; W-Al2O3-Ti-CuTe; ab initio modeling; buffer layers; conductance phenomenology; conductive-bridging RAM; electrical modeling; engineering electrolyte; field-driven ultrafast sub-ns programming; insulating gap; ionic-hopping barrier reduction; size 90 nm; switching phenomenology; Aluminum oxide; Programming; Resistance; Switches; Thermal conductivity; Thermal stability;