DocumentCode :
264421
Title :
Analyzing the Predictability of Exchange Traded Funds Characteristics in the Mutual Fund Market on the Flow of Shares Using a Data Mining Approach
Author :
Oztekin, Asil ; Best, Kyle ; DELEN, Dursun
Author_Institution :
Univ. of Massachusetts, Lowell, MA, USA
fYear :
2014
fDate :
6-9 Jan. 2014
Firstpage :
779
Lastpage :
788
Abstract :
This study is aimed at determining the future share net inflows and outflows by using the characteristics of Exchange Traded Funds (ETF) as variables in a data mining based analytic methodology. The relationship between net flows is closely related to investor perception of the future and past performance of mutual funds. In order to explore the relationship between investor´s perception of ETFs and subsequent net flows, this study is designed to shed light on the multifaceted linkages between fund characteristics and net flows. An international selection of 222 ETFs from one of the top three ETF providers is used in this study, of which fifteen attributes from each fund are used because they are likely to be contributors to fund inflows and outflows. Cross-Industry Standard Process for Data Mining (CRISP-DM) is used in this study accompanied with machine learning tools to develop a neural network which will forecast a positive or negative flow of net assets for ETFs.
Keywords :
data mining; stock markets; CRISP-DM; ETF providers; cross-industry standard process; data mining; exchange traded funds; mutual fund market; Data mining; Data models; Indexes; Investment; Mutual funds; Security; Standards; ETF; Predictive modeling; data mininig; exchange traded funds; mutual fund market;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
System Sciences (HICSS), 2014 47th Hawaii International Conference on
Conference_Location :
Waikoloa, HI
Type :
conf
DOI :
10.1109/HICSS.2014.104
Filename :
6758700
Link To Document :
بازگشت