DocumentCode
2647544
Title
The properties of Gabor wavelet transform
Author
Deng, Cai-xia ; Fu, Zuo-xian ; Ma, Xiao-Jian
Author_Institution
Harbin Univ. of Sci. & Technol., Harbin
Volume
4
fYear
2007
fDate
2-4 Nov. 2007
Firstpage
1504
Lastpage
1507
Abstract
The expression of the reproducing kernel function and the isometric identities of the image space of Gabor wavelet transform are shown in this paper. By the construction of the reproducing kernel function the authors show that the general and concrete properties of the image space of Gabor wavelet transform based on the image space of the continuous wavelet transform is a reproducing kernel Hilbert space. This provides the theoretic basis for discussing the image space of general wavelet transform.
Keywords
Hilbert spaces; image processing; wavelet transforms; Gabor wavelet transform; Hilbert space; continuous wavelet transform; isometric image space identity; reproducing kernel function; Continuous wavelet transforms; Hilbert space; Image analysis; Kernel; Mathematics; Pattern analysis; Pattern recognition; Space technology; Wavelet analysis; Wavelet transforms; Gabor wavelet; reproducing kernel; wavelet transform;
fLanguage
English
Publisher
ieee
Conference_Titel
Wavelet Analysis and Pattern Recognition, 2007. ICWAPR '07. International Conference on
Conference_Location
Beijing
Print_ISBN
978-1-4244-1065-1
Electronic_ISBN
978-1-4244-1066-8
Type
conf
DOI
10.1109/ICWAPR.2007.4421688
Filename
4421688
Link To Document