DocumentCode :
2647813
Title :
Neuron splitting for efficient feature map formation
Author :
Andrew, Lachlan L H
Author_Institution :
Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia
fYear :
1994
fDate :
29 Nov-2 Dec 1994
Firstpage :
10
Lastpage :
13
Abstract :
Kohonen´s Self Organising Feature Map (SOFM) produces an ordered mapping from one space to another. The paper describes an algorithm inspired by the splitting initialisation for the classical LBG method or generalised Lloyd algorithm (Y. Linde et al., 1980) for vector quantiser design, which allows the efficient generation of maps with various topologies and with high local and global ordering
Keywords :
self-organising feature maps; unsupervised learning; vector quantisation; Kohonen Self Organising Feature Map; SOFM; algorithm; classical LEG method; efficient feature map formation; global ordering; local ordering; neuron splitting; ordered mapping; splitting initialisation; vector quantiser design; Algorithm design and analysis; Artificial neural networks; Biological system modeling; Brain modeling; Gold; Network topology; Neurons; Partitioning algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Information Systems,1994. Proceedings of the 1994 Second Australian and New Zealand Conference on
Conference_Location :
Brisbane, Qld.
Print_ISBN :
0-7803-2404-8
Type :
conf
DOI :
10.1109/ANZIIS.1994.396960
Filename :
396960
Link To Document :
بازگشت