DocumentCode :
2648749
Title :
Efficient list-decoding of Reed-Solomon codes with the Fundamental Iterative Algorithm
Author :
Zeh, Alexander ; Gentner, Christian ; Bossert, Martin
Author_Institution :
Dept. of Telecommun. & Appl. Inf. Theor., Univ. of Ulm, Ulm, Germany
fYear :
2009
fDate :
11-16 Oct. 2009
Firstpage :
130
Lastpage :
134
Abstract :
In this paper we propose a new algorithm that solves the Guruswami-Sudan interpolation step for Reed-Solomon codes efficiently. It is a generalization of the Feng-Tzeng approach, the so-called fundamental iterative algorithm. From the interpolation constraints of the Guruswami-Sudan principle it is well known that an improvement of the decoding radius can only be achieved, if the multiplicity parameter s is smaller than the list size l. The code length is n and our proposed algorithm has a complexity (without asymptotic assumptions) of O(ls4 n2).
Keywords :
Reed-Solomon codes; communication complexity; decoding; iterative methods; Feng-Tzeng approach; Guruswami-Sudan interpolation; Reed-Solomon codes; communication complexity; efficient list-decoding; fundamental iterative algorithm; Algorithm design and analysis; Conferences; Equations; Information theory; Interpolation; Iterative algorithms; Iterative decoding; Polynomials; Reed-Solomon codes; Fundamental Iterative Algorithm (FIA); Guruswami-Sudan algorithm; Hankel matrices; Reed-Solomon codes; list decoding;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Workshop, 2009. ITW 2009. IEEE
Conference_Location :
Taormina
Print_ISBN :
978-1-4244-4982-8
Electronic_ISBN :
978-1-4244-4983-5
Type :
conf
DOI :
10.1109/ITW.2009.5351241
Filename :
5351241
Link To Document :
بازگشت