DocumentCode :
2649909
Title :
The application of separable least square algorithms based on global nonlinear for the parametric identifications of airplane flutter model
Author :
Jie, Yao ; Yong-hong, Zhu ; Jang-hong, Wang
Author_Institution :
Sch. of the Mech. & Electron., Jingdezhen Ceramic Inst., Jingdezhen, China
fYear :
2012
fDate :
23-25 May 2012
Firstpage :
2539
Lastpage :
2543
Abstract :
In this paper, we extend the biased compensated least-squares method (CLS) to get the nonlinear separable least squares (NSLS) when the observed input-output data are corrupted with noise. The nonlinear separable least square algorithm is adopted for aircraft flutter modal parameter identification under noisy environment. Combing with a rational transfer function model, the identification of system with noisy data is transformed into a nonlinear separable least square problem. Using this algorithm, the noise variance parameters and the model parameters can be obtained separately. The simulation with real flight test data shows the efficiency of the algorithm.
Keywords :
aerodynamics; aircraft; aircraft testing; least squares approximations; parameter estimation; rational functions; transfer functions; aircraft flutter modal parameter identification; airplane flutter model; biased compensated least square method; global nonlinear; input-output data; noise variance parameter; noisy environment; nonlinear separable least square algorithm; rational transfer function model; real flight test data; Airplanes; Atmospheric modeling; Equations; Mathematical model; Noise; Noise measurement; Transfer functions; Flutter; Least-squares method; Nonlinear separate least-squares; Parameter identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control and Decision Conference (CCDC), 2012 24th Chinese
Conference_Location :
Taiyuan
Print_ISBN :
978-1-4577-2073-4
Type :
conf
DOI :
10.1109/CCDC.2012.6243051
Filename :
6243051
Link To Document :
بازگشت