Title :
Identification of errors-in-variables systems using data clustering
Author :
Hunyadi, Levente ; Vajk, István
Author_Institution :
Dept. of Autom. & Appl. Inf., Budapest Univ. of Technol. & Econ., Budapest
Abstract :
The fact that simultaneous estimation of process and noise parameters using second-order properties is not possible under fairly general conditions is a well-known result in literature in the context of dynamic errors-in-variables systems. In order to make systems identifiable, additional restrictions have to be imposed. One possibility is that data are separable into two distinct clusters, which can be independently identified and the estimated parameters compared. This paper outlines an approach to system identification using principal component analysis to cluster data and the generalized Koopmans-Levin method to derive parameter estimates.
Keywords :
data handling; parameter estimation; pattern clustering; principal component analysis; data clustering; dynamic errors-in-variables systems; generalized Koopmans-Levin method; noise parameters; parameter estimation; principal component analysis; second-order properties; system identification; Automation; Covariance matrix; Gaussian noise; Informatics; Karhunen-Loeve transforms; Noise measurement; Parameter estimation; Principal component analysis; Signal to noise ratio; System identification; clustering; principal component analysis; simultaneous noise and process parameter estimation;
Conference_Titel :
Systems, Signals and Image Processing, 2008. IWSSIP 2008. 15th International Conference on
Conference_Location :
Bratislava
Print_ISBN :
978-80-227-2856-0
Electronic_ISBN :
978-80-227-2880-5
DOI :
10.1109/IWSSIP.2008.4604401