DocumentCode :
2651402
Title :
On learning Boolean functions and punctured Reed-Muller-codes
Author :
Schober, Steffen ; Bossert, Martin
Author_Institution :
Inst. of Telecommun. & Appl. Inf. Theor., Ulm Univ., Ulm, Germany
fYear :
2009
fDate :
11-16 Oct. 2009
Firstpage :
465
Lastpage :
469
Abstract :
The problem of learning an affine Boolean function from noisy examples is considered. This problem is equivalent to the decoding of a binary message encoded with a random linear code and can be also viewed as the problem to decode a message encoded with a randomly punctured Reed-Muller code of first order. The error exponent of the error probability of a learning machine based on spectral learning techniques is shown to be lower bounded by the random coding error exponent.
Keywords :
Boolean functions; Reed-Muller codes; error statistics; linear codes; affine Boolean function; binary message; error probability; learning machine; punctured Reed-Muller-codes; random coding error exponent; random linear code; spectral learning techniques; Boolean functions; Conferences; Decoding; Electrostatic precipitators; Erbium; Error probability; Fourier transforms; Information theory; Linear code; Machine learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Workshop, 2009. ITW 2009. IEEE
Conference_Location :
Taormina
Print_ISBN :
978-1-4244-4982-8
Electronic_ISBN :
978-1-4244-4983-5
Type :
conf
DOI :
10.1109/ITW.2009.5351395
Filename :
5351395
Link To Document :
بازگشت