Title :
Novel stabilization design for the inertia wheel pendulum
Author :
Huawen, Ye ; Yang, Hu ; Shuqing, Huang ; Weihua, Gui
Author_Institution :
Sch. of Inf. Sci. & Eng., Central South Univ., Changsha
Abstract :
In this paper, a novel stabilization design is presented for the inertia wheel pendulum by using backstepping technique and a twice differentiable saturation function. The global asymptotic stability is proven by showing that the closed-loop system has no finite escape time and eventually reduces to an asymptotically stable dynamics. Simulations show that the proposed design is effective.
Keywords :
asymptotic stability; closed loop systems; control nonlinearities; pendulums; wheels; backstepping technique; closed-loop system; global asymptotic stability; inertia wheel pendulum; stabilization; twice differentiable saturation function; Asymptotic stability; Backstepping; Centralized control; Equations; Information science; Lyapunov method; Stability analysis; Switches; Torque; Wheels; Backstepping; Inertia wheel pendulum; Saturated control; Stabilization;
Conference_Titel :
Control Conference, 2008. CCC 2008. 27th Chinese
Conference_Location :
Kunming
Print_ISBN :
978-7-900719-70-6
Electronic_ISBN :
978-7-900719-70-6
DOI :
10.1109/CHICC.2008.4605009