Title :
Dynamic resource allocation for broadband MIMO/OFDM systems
Author :
Pan, Ya-Han ; Aïssa, Sonia
Abstract :
Dynamic resource allocation combined with multiple antennas (MIMO) can farther increase the system capacity and the quality of service (QoS) of conventional OFDM systems. Selection diversity is the simplest way to realize spatial diversity, but the performance improvement of this form of diversity is limited. Adaptive antenna arrays promise to achieve significant increases in system capacity and performance in wireless communications, but they are characterized by a relatively higher implementation complexity than that of selection diversity. In this paper, we propose a dynamic resource allocation scheme with selective beamforming for MIMO/OFDM systems. By applying eigenvalue decomposition on the subset of all available channel correlation matrices, the best beamforming, which corresponds to the largest eigenvalue in the subset, is adaptively selected. Then the proposed dynamic resource allocation algorithm adaptively assigns the bit and power distribution according to the channel gain corresponding to the selected best beamforming, under the constraint of fixed power and overall bit rate. By doing so, the maximal SNR on each sub-carrier obtained by selective beamforming is further maximized. Numerical results show that under frequency-selective multipath fading, the proposed system yields significant performance improvements over the conventional OFDM transmission.
Keywords :
MIMO systems; OFDM modulation; channel allocation; eigenvalues and eigenfunctions; fading channels; multipath channels; radiocommunication; QoS; bit distribution; broadband MIMO-OFDM systems; dynamic resource allocation scheme; eigenvalue decomposition; frequency-selective multipath fading; power distribution; quality of service; selective beamforming; wireless communications; Adaptive arrays; Antenna arrays; Array signal processing; Eigenvalues and eigenfunctions; MIMO; Matrix decomposition; OFDM; Quality of service; Resource management; Wireless communication; Dynamic resource allocation; Joint selective transmit and receive beamforming; MIMO/OFDM; Selection diversity;
Conference_Titel :
Wireless Networks, Communications and Mobile Computing, 2005 International Conference on
Print_ISBN :
0-7803-9305-8
DOI :
10.1109/WIRLES.2005.1549525