DocumentCode :
265953
Title :
Probabilistic roadmaps and hierarchical genetic algorithms for optimal motion planning
Author :
Lakhdari, Abdallah ; Achour, Nouara
Author_Institution :
LRPE Lab., USTHB Univ., Algiers, Algeria
fYear :
2014
fDate :
27-29 Aug. 2014
Firstpage :
221
Lastpage :
225
Abstract :
In this paper we present a motion planning algorithm that combines between Probabilistic Roadmaps (PRM) and Hierarchical Genetic Algorithms (HGA) in order to generate optimal motions for a non holonomic mobile robot. PRM are used to generate a set of paths that will be optimized by HGA, the obtained trajectory leads a non holonomic mobile robot from an initial to a final configuration while maintaining feasibility and no-collision with obstacles.
Keywords :
genetic algorithms; mobile robots; path planning; probability; HGA; PRM; hierarchical genetic algorithms; motion planning algorithm; nonholonomic mobile robot; obstacle avoidance; optimal motion planning; probabilistic roadmaps; Biological cells; Genetic algorithms; Mobile robots; Optimization; Planning; Trajectory; PRM; Path planning; hierarchical genetic algorithms; robotics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Science and Information Conference (SAI), 2014
Conference_Location :
London
Print_ISBN :
978-0-9893-1933-1
Type :
conf
DOI :
10.1109/SAI.2014.6918193
Filename :
6918193
Link To Document :
بازگشت