DocumentCode :
2659883
Title :
RSHMM++ for extractive lecture speech summarization
Author :
Zhang, Justin Jian ; Huang, Shilei ; Fung, Pascale
Author_Institution :
Dept. of Electron. & Comput. Eng., Univ. of Sci. & Technol. (HKUST), Hong Kong
fYear :
2008
fDate :
15-19 Dec. 2008
Firstpage :
161
Lastpage :
164
Abstract :
We propose an enhanced Rhetorical-State Hidden Markov Model (RSHMM++) for extracting hierarchical structural summaries from lecture speech. One of the most underutilized information in extractive summarization is rhetorical structure hidden in speech data. RSHMM++ automatically decodes this underlying information in order to provide better summaries. We show that RSHMM++ gives a 72.01% ROUGE-L F-measure, a 9.78% absolute increase in lecture speech summarization performance compared to the baseline system without using rhetorical information. We also propose Relaxed DTW for compiling reference summaries.
Keywords :
hidden Markov models; speech processing; ROUGE-L F-measure; RSHMM++; extractive lecture speech summarization; extractive summarization; hierarchical structural summaries; reference summaries; relaxed DTW; rhetorical information; rhetorical structure; rhetorical-state hidden Markov model; speech data; underutilized information; Automatic speech recognition; Data mining; Decoding; Hidden Markov models; Humans; Natural languages; Speech enhancement; Speech processing; Support vector machines; Text recognition; rhetorical information; speech summarization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Spoken Language Technology Workshop, 2008. SLT 2008. IEEE
Conference_Location :
Goa
Print_ISBN :
978-1-4244-3471-8
Electronic_ISBN :
978-1-4244-3472-5
Type :
conf
DOI :
10.1109/SLT.2008.4777865
Filename :
4777865
Link To Document :
بازگشت