DocumentCode :
2661815
Title :
Convergence properties of multi-innovation ESG algorithms for multi-input multi-output CARMA models
Author :
Jie, Ding ; Yang, Shi ; Feng, Ding
Author_Institution :
Control Sci. & Eng. Res. Center, Jiangnan Univ., Wuxi
fYear :
2008
fDate :
16-18 July 2008
Firstpage :
270
Lastpage :
274
Abstract :
In this paper, we extend the residual based extended stochastic gradient (ESG) algorithm with a poor convergence rate for multi-input multi-output CARMA models and present multi-innovation ESG identification algorithm. Because the proposed multi-innovation ESG algorithm uses not only the current innovation but also the past innovation at each iteration, thus parameter estimation accuracy can be improved. Further, we analyze the convergence properties of the algorithm involved and show that the parameter estimation errors have faster convergence rate to zero than that of the ESG algorithm. The simulation results are included.
Keywords :
MIMO systems; convergence; gradient methods; parameter estimation; stochastic processes; convergence property; extended stochastic gradient; multiinnovation ESG identification algorithm; multiinput multioutput CARMA model; parameter estimation; Algorithm design and analysis; Convergence; Least squares approximation; MIMO; Mechanical engineering; Parameter estimation; Stochastic processes; Stochastic resonance; Stochastic systems; Technological innovation; Convergence properties; Least squares; Martingale convergence theorem; Multivariable systems; Parameter estimation; Recursive identification; Stochastic gradient;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference, 2008. CCC 2008. 27th Chinese
Conference_Location :
Kunming
Print_ISBN :
978-7-900719-70-6
Electronic_ISBN :
978-7-900719-70-6
Type :
conf
DOI :
10.1109/CHICC.2008.4605254
Filename :
4605254
Link To Document :
بازگشت