DocumentCode :
2666616
Title :
Extracting compact T-S fuzzy models using subtractive clustering and particle swarm optimization
Author :
Liang, Zhao ; Yupu, Yang ; Yong, Zeng
Author_Institution :
Dept. of Autom., Shanghai JiaoTong Univ., Shanghai
fYear :
2008
fDate :
16-18 July 2008
Firstpage :
362
Lastpage :
366
Abstract :
This paper presents a two-stage approach to extract compact Takagi-Sugeno (TS) fuzzy models using subtractive clustering and particle swarm optimization (PSO) from numeric data. On the first stage, the subtractive clustering is employed to partition the input space and extract a fuzzy rules base. On the second stage, the PSO algorithm is used to search the optimal membership functions (MFs), consequent parameters and the rule weights of the crude model obtained on the first stage simultaneously. Simulation results on two benchmark modeling problems show that the proposed approach is effective in finding compact and accurate TS fuzzy models.
Keywords :
fuzzy control; nonlinear control systems; particle swarm optimisation; pattern clustering; search problems; Takagi-Sugeno fuzzy models; benchmark modeling problems; fuzzy rules base extraction; nonlinear system modeling; optimal membership functions searching; particle swarm optimization; subtractive clustering; Automation; Clustering algorithms; Data mining; Encoding; Evolutionary computation; Fuzzy control; Fuzzy systems; Least squares approximation; Particle swarm optimization; Takagi-Sugeno model; Fuzzy modeling; Nonlinear system modeling; Particle swarm optimization; Takagi-sugeno fuzzy model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference, 2008. CCC 2008. 27th Chinese
Conference_Location :
Kunming
Print_ISBN :
978-7-900719-70-6
Electronic_ISBN :
978-7-900719-70-6
Type :
conf
DOI :
10.1109/CHICC.2008.4605550
Filename :
4605550
Link To Document :
بازگشت