DocumentCode :
2667350
Title :
Energy-Efficient Data Aggregation Hierarchy for Wireless Sensor Networks
Author :
Chen, Yuanzhu Peter ; Liestman, Arthur L. ; Liu, Jiangchuan
Author_Institution :
Simon Fraser University, British Columbia, Canada
fYear :
2005
fDate :
22-24 Aug. 2005
Firstpage :
7
Lastpage :
7
Abstract :
A network of sensors can be used to obtain state-based data from the area in which they are deployed. To reduce costs, the data, sent via intermediate sensors to a sink, is often aggregated (or compressed). This compression is done by a subset of the sensors called aggregators. Since sensors are usually equipped with small and unreplenishable energy reserves, a critical issue is to strategically deploy an appropriate number of aggregators so as to minimize the amount of energy consumed by transporting and aggregating the data. In this paper, we first study single-level aggregation and propose an Energy-Efficient Protocol for Aggregator Selection (EPAS). Then, we generalize it to an aggregation hierarchy and extend EPAS to a Hierarchical Energy-Efficient Protocol for Aggregator Selection (hEPAS). We derive the optimal number of aggregators with generalized compression and power-consumption models, and present fully distributed algorithms for aggregator deployment. Simulation results show that our algorithms significantly reduce the energy consumption for data collection in wireless sensor networks. Moreover, the algorithms do not rely on particular routing protocols, and are thus applicable to a broad spectrum of application environments.
Keywords :
Art; Computer networks; Costs; Distributed algorithms; Energy consumption; Energy efficiency; Protocols; Wavelet coefficients; Wavelet transforms; Wireless sensor networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Quality of Service in Heterogeneous Wired/Wireless Networks, 2005. Second International Conference on
Print_ISBN :
0-7695-2423-0
Type :
conf
DOI :
10.1109/QSHINE.2005.21
Filename :
1551067
Link To Document :
بازگشت