DocumentCode :
2668883
Title :
Combination of independent kernel density estimators in classification
Author :
Kobos, Mateusz
Author_Institution :
Fac. of Math. & Inf. Sci., Warsaw Univ. of Technol., Warsaw, Poland
fYear :
2009
fDate :
12-14 Oct. 2009
Firstpage :
57
Lastpage :
63
Abstract :
A new classification algorithm based on combination of two independent kernel density estimators per class is proposed. Each estimator is characterized by a different bandwidth parameter. Combination of the estimators corresponds to viewing the data with different ¿resolutions¿. The intuition behind the method is that combining different views on the data yields a better insight into the data structure; therefore, it leads to a better classification result. The bandwidth parameters are adjusted automatically by the L-BFGS-B algorithm to minimize the cross-validation classification error. Results of experiments on benchmark data sets confirm the algorithm´s applicability.
Keywords :
operating system kernels; L-BFGS-B algorithm; bandwidth parameter; cross-validation classification error; independent kernel density estimators; Bandwidth; Boosting; Classification algorithms; Computer science; Data structures; Information science; Information technology; Kernel; Mathematics; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Science and Information Technology, 2009. IMCSIT '09. International Multiconference on
Conference_Location :
Mragowo
Print_ISBN :
978-1-4244-5314-6
Type :
conf
DOI :
10.1109/IMCSIT.2009.5352749
Filename :
5352749
Link To Document :
بازگشت