DocumentCode :
2669994
Title :
Hyperspectral images classification and Dimensionality Reduction using Homogeneity feature and mutual information
Author :
Nhaila, Hasna ; Merzouqi, Maria ; Sarhrouni, Elkebir ; Hammouch, Ahmed
Author_Institution :
Electr. Eng. Res. Lab., Mohammed V Univ., Rabat, Morocco
fYear :
2015
fDate :
25-26 March 2015
Firstpage :
1
Lastpage :
5
Abstract :
The Hyperspectral image (HSI) contains several hundred bands of the same region called the Ground Truth (GT). The bands are taken in juxtaposed frequencies, but some of them are noisily measured or contain no information. For the classification, the selection of bands, affects significantly the results of classification, in fact, using a subset of relevant bands, these results can be better than those obtained using all bands, from which the need to reduce the dimensionality of the HSI. In this paper, a categorization of dimensionality reduction methods, according to the generation process, is presented. Furthermore, we reproduce an algorithm based on mutual information (MI) to reduce dimensionality by features selection and we introduce an algorithm using mutual information and homogeneity. The two schemas are a filter strategy. Finally, to validate this, we consider the case study AVIRIS HSI 92AV3C.
Keywords :
data reduction; feature selection; geophysical image processing; hyperspectral imaging; image classification; image filtering; HSI; dimensionality reduction method; feature selection; filter strategy; generation process; homogeneity feature information; hyperspectral image classification; mutual information; Accuracy; Classification algorithms; Hyperspectral imaging; Information filters; Mutual information; Redundancy; Hyperspectrale images; classification; features selection; homogeneity; mutual information;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems and Computer Vision (ISCV), 2015
Conference_Location :
Fez
Print_ISBN :
978-1-4799-7510-5
Type :
conf
DOI :
10.1109/ISACV.2015.7106167
Filename :
7106167
Link To Document :
بازگشت