DocumentCode :
2672061
Title :
The EM/MPM algorithm for segmentation of textured images: analysis and further experimental results
Author :
Comer, Mary L. ; Delp, Edward J.
Author_Institution :
Comput. Vision & Image Process. Lab., Purdue Univ., West Lafayette, IN, USA
Volume :
3
fYear :
1996
fDate :
16-19 Sep 1996
Firstpage :
947
Abstract :
In this paper we present new results relative to the “expectation-maximization/maximization of the posterior marginals” (EM/MPM) algorithm for simultaneous parameter estimation and segmentation of textured images. The goal of the EM/MPM algorithm is to minimize the expected value of the number of misclassified pixels. We present new theoretical results in this paper which show that the algorithm can be expected to achieve this goal, to the extent that the EM estimates of the model parameters are close to the true values of the model parameters. We also present new experimental results demonstrating the performance of the algorithm
Keywords :
convergence of numerical methods; image classification; image segmentation; image texture; minimisation; parameter estimation; EM/MPM algorithm; expectation-maximization; image segmentation; maximization of the posterior marginals; misclassified pixels; model parameters; parameter estimation; textured images; Algorithm design and analysis; Computer vision; Image analysis; Image processing; Image segmentation; Image texture analysis; Parameter estimation; Pixel; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 1996. Proceedings., International Conference on
Conference_Location :
Lausanne
Print_ISBN :
0-7803-3259-8
Type :
conf
DOI :
10.1109/ICIP.1996.560955
Filename :
560955
Link To Document :
بازگشت