DocumentCode :
2672847
Title :
Inversion algorithms comparison using L-band simulated polarimetric interferometric data for forest parameters estimation
Author :
Angiuli, E. ; Frate, F. Del ; Vecchia, A. Della ; Lavalle, M. ; Solimini, D. ; Licciardi, G.
Author_Institution :
Tor Vergata Univ., Rome
fYear :
2007
fDate :
23-28 July 2007
Firstpage :
2477
Lastpage :
2480
Abstract :
Polarimetric SAR interferometric data can provide estimates of forest biomass density. There are different approaches to deal with the inversion problem, such as neural networks and the traditional optimal estimation approach. This paper presents a study to evaluate their performance by means of quantitative indexes addressing both the computation time and the retrieval accuracy. Better forest parameters estimates have been obtained when neural networks algorithms were used.
Keywords :
forestry; geophysical techniques; inverse problems; neural nets; radar interferometry; L-band simulated polarimetric interferometric data; forest biomass density; forest parameters estimation; inversion algorithms; inversion problem; neural networks algorithms; optimal estimation approach; polarimetric SAR interferometric data; Biomass; Coherence; Computational modeling; Geophysics computing; L-band; Neural networks; Parameter estimation; Polarization; Scattering; Soil moisture;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International
Conference_Location :
Barcelona
Print_ISBN :
978-1-4244-1211-2
Electronic_ISBN :
978-1-4244-1212-9
Type :
conf
DOI :
10.1109/IGARSS.2007.4423345
Filename :
4423345
Link To Document :
بازگشت