DocumentCode :
2675718
Title :
Hyperspectral signal subspace estimation
Author :
Nascimento, José M P ; Bioucas-Dias, José M.
Author_Institution :
Inst. Super. de Engenharia de Lisboa, Lisbon
fYear :
2007
fDate :
23-28 July 2007
Firstpage :
3225
Lastpage :
3228
Abstract :
Given an hyperspectral image, the determination of the number of end members and the subspace where they live without any prior knowledge is crucial to the success of hyperspectral image analysis. This paper introduces a new minimum mean squared error based approach to infer the signal subspace in hyperspectral imagery. The method, termed hyperspectral signal identification by minimum error (HySime), is eigendecomposition based and it does not depend on any tuning parameters. It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.
Keywords :
geophysical signal processing; remote sensing; AVIRIS sensor; Cuprite; HySime; Nevada; USGS laboratory spectra; eigendecomposition; hyperspectral image analysis; hyperspectral signal identification by minimum error; hyperspectral signal subspace estimation; Eigenvalues and eigenfunctions; Hybrid fiber coaxial cables; Hyperspectral imaging; Hyperspectral sensors; Image analysis; Infrared image sensors; Principal component analysis; Signal processing; Telecommunications; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International
Conference_Location :
Barcelona
Print_ISBN :
978-1-4244-1211-2
Electronic_ISBN :
978-1-4244-1212-9
Type :
conf
DOI :
10.1109/IGARSS.2007.4423531
Filename :
4423531
Link To Document :
بازگشت