DocumentCode :
2678306
Title :
3D human modeling using virtual multi-view stereopsis and object-camera motion estimation
Author :
Lam, D. ; Hong, R.Z. ; DeSouza, G.N.
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Missouri, Columbia, MO, USA
fYear :
2009
fDate :
10-15 Oct. 2009
Firstpage :
4294
Lastpage :
4299
Abstract :
This paper presents a method for multi-view 3D modeling of human bodies using virtual stereopsis. The algorithm expands and improves the method used in, but unlike that method, our approach does not require multiple calibrated cameras and/or carefully-positioned turn tables. Instead, an algorithm using SIFT feature extraction is employed and an accurate motion estimation is performed to calculate the position of virtual cameras around the object. That is, by employing a single pair of cameras mounted on a same tripod, our algorithm computes the relative pose between camera and object and creates virtual cameras from the consecutive images in the video sequence. Besides not requiring any special setup, another advantage of our method is in the simplicity to obtain denser models if necessary: by only increasing the number of sampled images during the object-camera motion. As the quantitative results presented here demonstrate, our method compares to the PMVS method, while it makes it much simpler and cost-effective to implement.
Keywords :
cameras; feature extraction; image sequences; motion estimation; stereo image processing; 3D human modeling; SIFT feature extraction; object-camera motion estimation; video sequence; virtual cameras; virtual multiview stereopsis; Biological system modeling; Cameras; Constraint optimization; Costs; Humans; Image reconstruction; Intelligent robots; Motion detection; Motion estimation; USA Councils;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on
Conference_Location :
St. Louis, MO
Print_ISBN :
978-1-4244-3803-7
Electronic_ISBN :
978-1-4244-3804-4
Type :
conf
DOI :
10.1109/IROS.2009.5354040
Filename :
5354040
Link To Document :
بازگشت