• DocumentCode
    26784
  • Title

    A Shrinkage Linear Minimum Mean Square Error Estimator

  • Author

    Chao-Kai Wen ; Jung-Chieh Chen ; Pangan Ting

  • Author_Institution
    Inst. of Commun. Eng., Nat. Sun Yat-sen Univ., Kaohsiung, Taiwan
  • Volume
    20
  • Issue
    12
  • fYear
    2013
  • fDate
    Dec. 2013
  • Firstpage
    1179
  • Lastpage
    1182
  • Abstract
    The conventional linear minimum mean square error (LMMSE) estimator is commonly implemented through the sample covariance matrix. This estimator can only be implemented if the sample size N is higher than the observation dimension M. Moreover, this estimator performs poorly when the sample size is not sufficiently large. To address this problem, we propose a new shrinkage LMMSE estimator. The proposed estimator performs efficiently over a wide range of observation dimensions and sample sizes. In contrast to existing methods, the proposed estimator can be applied if M ≥ N. Even if M <; N, the proposed estimator performs more efficiently than existing estimators.
  • Keywords
    covariance matrices; least mean squares methods; observation dimensions; sample covariance matrix; sample size; shrinkage LMMSE estimator; shrinkage linear minimum mean square error estimator; Covariance matrices; Estimation; Indexes; Interference; Mean square error methods; Signal to noise ratio; Estimator; LMMSE; high-dimensional data; sample covariance; shrinkage;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/LSP.2013.2283725
  • Filename
    6612654