DocumentCode :
2678910
Title :
Implantation study of an analog spiking neural network in an auto-adaptive pacemaker
Author :
Sun, Qing ; Schwartz, François ; Michel, Jacques ; Rom, Rami
Author_Institution :
Inst. d´´lectronique du Solide et des Syst., Univ. of Strasbourg, Strasbourg
fYear :
2008
fDate :
22-25 June 2008
Firstpage :
41
Lastpage :
44
Abstract :
The goals of this research are to develop an analog spiking neural network so as to improve the performance of biventricular pacemaker (CRT devices). Implantation in silicon uses the analogical neural network approach that requires the development of a technical solution satisfying the requirement of very low energy consumption. Targeting an alternative analog solution in 0.18 mum CMOS technology, this paper presents a new approach in analog spiking neural network for the delay prediction by using a Hebbian learning algorithm.
Keywords :
CMOS analogue integrated circuits; Hebbian learning; biomedical equipment; cardiology; medical computing; neural nets; pacemakers; CMOS technology; Hebbian learning algorithm; analog spiking neural network; auto-adaptive pacemaker; biventricular pacemaker; cardiac resynchronization therapy device; delay prediction; size 0.18 mum; Artificial intelligence; CMOS technology; Cathode ray tubes; Delay effects; Electrodes; Heart; Hemodynamics; Neural networks; Pacemakers; Sensor phenomena and characterization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems and TAISA Conference, 2008. NEWCAS-TAISA 2008. 2008 Joint 6th International IEEE Northeast Workshop on
Conference_Location :
Montreal, QC
Print_ISBN :
978-1-4244-2331-6
Electronic_ISBN :
978-1-4244-2332-3
Type :
conf
DOI :
10.1109/NEWCAS.2008.4606316
Filename :
4606316
Link To Document :
بازگشت