DocumentCode :
2679607
Title :
Hyperbolic “Smoothing” of shapes
Author :
Siddiqi, Kaleem ; Tannenbaum, Allen ; Zucker, Steven W.
Author_Institution :
Center for Comput. Vision & Control, Yale Univ., New Haven, CT, USA
fYear :
1998
fDate :
4-7 Jan 1998
Firstpage :
215
Lastpage :
221
Abstract :
We have been developing a theory of generic 2-D shape based on a reaction-diffusion model from mathematical physics. The description of a shape is derived from the singularities of a curve evolution process driven by the reaction (hyperbolic) term. The diffusion (parabolic) term is related to smoothing and shape simplification. However, the unification of the two is problematic, because the slightest amount of diffusion dominates and prevents the formation of generic first-order shocks. The technical issue is whether it is possible to smooth a shape, in any sense, without destroying the shocks. We now report a constructive solution to this problem, by embedding the smoothing term in a global metric against which a purely hyperbolic evolution is performed from the initial curve. This is a new flow for shape, that extends the advantages of the original one. Specific metrics are developed, which lead to a natural hierarchy of shape features, analogous to the simplification one might perceive when viewing an object from increasing distances. We illustrate our new flow with a variety of examples
Keywords :
computer vision; computer vision; curve evolution process; generic 2-D shape; hyperbolic; shape descriptions; shape simplification; smoothing; visual shape analysis; Birds; Computer vision; Electric shock; North America; Physics computing; Psychology; Shape control; Skeleton; Smoothing methods; Tail;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision, 1998. Sixth International Conference on
Conference_Location :
Bombay
Print_ISBN :
81-7319-221-9
Type :
conf
DOI :
10.1109/ICCV.1998.710721
Filename :
710721
Link To Document :
بازگشت