DocumentCode :
2683870
Title :
BB84 Implementation and Computer Reality
Author :
Bellot, Patrick ; Dang, Minh-Dung
Author_Institution :
Inst. Telecom, Telecom ParisTech, Paris, France
fYear :
2009
fDate :
13-17 July 2009
Firstpage :
1
Lastpage :
8
Abstract :
Quantum Key Distribution (QKD) principles and software implementations are now well-known. Focussing on CASCADE algorithm, a major step of the key distillation algorithm (BB84), we show that the mathematical optimality may not mean practical efficiency because of the design of computers and their processors. As pointed out by John Backus , the father of FORTRAN, most of the work of the processor of a Von Neumann computer is dedicated to transfer to and from memory and the computer bus appears as a bottleneck. Thus, it is preferable to repeat simple computations than to randomly access the memory. This will impact the design of the permutations required by CASCADE. Moreover, computers are designed to work with bytes, not with bits. This will imply a reparametrization of CASCACDE different from the mathematically optimal parametrization.
Keywords :
quantum computing; quantum cryptography; BB84 implementation; CASCADE algorithm; FORTRAN; Quantum Key Distribution; Von Neumann computer processor; computer reality; key distillsation algorithm; mathematically optimal parametrization; permutation; Algorithm design and analysis; Authentication; Cryptography; Data buses; Distributed computing; Error analysis; Hardware; Privacy; Software design; Telecommunication computing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computing and Communication Technologies, 2009. RIVF '09. International Conference on
Conference_Location :
Da Nang
Print_ISBN :
978-1-4244-4566-0
Electronic_ISBN :
978-1-4244-4568-4
Type :
conf
DOI :
10.1109/RIVF.2009.5174626
Filename :
5174626
Link To Document :
بازگشت