DocumentCode :
2683947
Title :
Bayesian Estimation of Altimeter Echo Parameters
Author :
Severini, J. ; Mailhes, C. ; Thibaut, P. ; Tourneret, J.Y.
Author_Institution :
IRIT-ENSEEIHT-TESA, Univ. of Toulouse, Toulouse
Volume :
3
fYear :
2008
fDate :
7-11 July 2008
Abstract :
This paper studies a Bayesian algorithm for estimating the parameters associated to Brown´s model. The joint posterior distribution of the unknown parameter vector (amplitude, epoch and significant wave height) associated with this model is derived. This posterior is too complex to obtain closed form expressions of the minimum mean square error and the maximum a posteriori estimators. We propose to sample according to this distribution using an hybrid Metropolis within Gibbs algorithm. The simulated samples are then used to estimate the unknown parameters of Brown´s model. The proposed strategy provides better estimations than the standard maximum likelihood estimator at the price of an increased computational cost.
Keywords :
Bayes methods; echo; radar altimetry; Bayesian estimation; Brown model; Gibbs algorithm; Metropolis-Hastings algorithm; altimeter echo parameters; altimetry; computational cost; maximum a posteriori estimators; minimum mean square error; significant wave height; Additive noise; Bayesian methods; Maximum a posteriori estimation; Maximum likelihood estimation; Mean square error methods; Oceans; Parameter estimation; Satellites; Sea measurements; Speckle; Altimetry; Bayesian estimation; Gibbs sampler; Metropolis-Hastings algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International
Conference_Location :
Boston, MA
Print_ISBN :
978-1-4244-2807-6
Electronic_ISBN :
978-1-4244-2808-3
Type :
conf
DOI :
10.1109/IGARSS.2008.4779327
Filename :
4779327
Link To Document :
بازگشت