DocumentCode :
2685799
Title :
Segmentation and Classification of Hyperspectral Data using Watershed
Author :
Tarabalka, Yuliya ; Chanussot, Jocelyn ; Benediktsson, Jon Atli ; Angulo, Jesus ; Fauvel, Mathieu
Volume :
3
fYear :
2008
fDate :
7-11 July 2008
Abstract :
The paper presents a new segmentation and classification scheme to analyze hyperspectral (HS) data. The Robust Color Morphological Gradient of the HS image is computed, and the watershed transformation is applied to the obtained gradient. After the pixel-wise Support Vector Machines classification, the majority voting within the watershed regions is performed. Experimental results are presented on a 103-airborne ROSIS image, of the University of Pavia, Italy. The integration of the spatial information from the watershed segmentation into the HS image classification improves the classification accuracies, when compared to the pixel-wise classification.
Keywords :
geophysical techniques; geophysics computing; image classification; image segmentation; remote sensing; support vector machines; Italy; Robust Color Morphological Gradient; University of Pavia; airborne ROSIS image; hyperspectral data classification; hyperspectral data segmentation; pixel-wise Support Vector Machines; spatial information integration; watershed transformation; Data analysis; Electronic mail; Feature extraction; Hyperspectral imaging; Hyperspectral sensors; Image segmentation; Morphology; Pixel; Robustness; Support vector machines; classification; hyperspectral images; mathematical morphology; segmentation; watershed;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International
Conference_Location :
Boston, MA
Print_ISBN :
978-1-4244-2807-6
Electronic_ISBN :
978-1-4244-2808-3
Type :
conf
DOI :
10.1109/IGARSS.2008.4779432
Filename :
4779432
Link To Document :
بازگشت