Title :
Optimized Laser Thermal Annealing on Germanium for High Dopant Activation and Low Leakage Current
Author :
Shayesteh, M. ; O´Connell, D. ; Gity, F. ; Murphy-Armando, P. ; Ran Yu ; Huet, K. ; Toque-Tresonne, I. ; Cristiano, F. ; Boninelli, S. ; Henrichsen, H.H. ; Nielsen, P.F. ; Petersen, D.H. ; Duffy, R.
Author_Institution :
Tyndall Nat. Inst., Univ. Coll. Cork, Cork, Ireland
Abstract :
In this paper, state-of-the-art laser thermal annealing is used to fabricate Ge diodes. We compared the effect of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical properties of phosphorus and Arsenic-doped n+/p junctions. Using LTA, high carrier concentration above 1020 cm-3 was achieved in n-type doped regions, which enables low access resistance in Ge devices. Furthermore, the LTA process was optimized to achieve a diode ION/IOFF ratio ~105 and ideality factor (n) ~1.2, as it allows excellent junction depth control when combined with optimized implant conditions. On the other hand, RTA revealed very high ION/IOFF ratio ~107 and n ~1, at the cost of high dopant diffusion and lower carrier concentrations which would degrade scalability and access resistance.
Keywords :
elemental semiconductors; germanium; laser beam annealing; leakage currents; optimisation; semiconductor doping; Ge; electrical properties; high dopant activation; high dopant diffusion; junction depth control; low leakage current; optimized laser thermal annealing; Annealing; Leakage currents; Rough surfaces; Surface morphology; Surface roughness; Surface treatment; Thermal analysis; Ge; laser thermal annealing (LTA); leakage current; n+/p junction.; n+/p junction;
Journal_Title :
Electron Devices, IEEE Transactions on
DOI :
10.1109/TED.2014.2364957