DocumentCode :
2690845
Title :
Multi-objective evolutionary Recurrent Neural Networks for system identification
Author :
Ang, J.H. ; Goh, C.K. ; Teoh, E.J. ; Mamun, A.A.
Author_Institution :
Nat. Univ. of Singapore, Singapore
fYear :
2007
fDate :
25-28 Sept. 2007
Firstpage :
1586
Lastpage :
1592
Abstract :
This paper proposes a new multi-objective evolutionary approach for training recurrent neural networks (RNNs). The algorithm uses features of a variable length representation allowing easy adaptation of neural networks structures and a micro genetic algorithm (muGA) with an adaptive local search intensity scheme for local fine-tuning. In addition, a structural mutation (SM) operator for evolving the appropriate number of neurons for RNNs is used. Simulation results demonstrated the effectiveness of proposed method for system identification tasks.
Keywords :
evolutionary computation; recurrent neural nets; adaptive local search intensity scheme; microgenetic algorithm; multiobjective evolutionary recurrent neural networks; structural mutation operator; system identification; variable length representation; Evolutionary computation; Recurrent neural networks; System identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2007. CEC 2007. IEEE Congress on
Conference_Location :
Singapore
Print_ISBN :
978-1-4244-1339-3
Electronic_ISBN :
978-1-4244-1340-9
Type :
conf
DOI :
10.1109/CEC.2007.4424662
Filename :
4424662
Link To Document :
بازگشت