Title :
Optimized network configuration parameter assignment based on graph coloring
Author :
Bandh, T. ; Carle, G. ; Sanneck, H. ; Schmelz, L.C. ; Romeikat, R. ; Bauer, B.
Author_Institution :
Network Archit. & Services, Tech. Univ. Munchen, Garching, Germany
Abstract :
The trend for future mobile networks is to move away from Network Elements (NEs) delivered with specially tailored configurations towards off-the-shelf products. The configurations of NEs are automatically created with respect to their context including information on location and configuration of neighboring NEs. To minimize time-consuming and error-prone human interaction, automatic behavior is required for all stages of a NE´s life cycle. The possibility to pre-assess the effects of configuration changes is inevitable in order to avoid service degradation caused by unnecessary reconfigurations. Graph coloring-based Physical Cell ID (PCID) assignment for LTE networks was introduced previously. The foundation on graph coloring theory allowed to transfer knowledge from this domain to the task of PCID assignment in order to pre-asses if an assignment is possible and how many PCIDs are required. Now the focus lies on adaptations of the basic approach to satisfy additional operator requirements such as safety margins. Those adaptations should provide equally good results in terms of used PCIDs with only minimal impact on costs and operation and maintenance tasks. Variations of the basic PCID assignment approach are discussed to address other types of problems.
Keywords :
cellular radio; graph colouring; mobile communication; telecommunication network management; LTE networks; automatic behavior; error-prone human interaction; future mobile networks; graph coloring; long-term evolution; maintenance tasks; network configuration parameter assignment; network elements; physical cell ID assignment; safety margins; service degradation; Availability; Complex networks; Costs; Degradation; Humans; Radio communication; Safety; Stability; Telecommunication network reliability; Urban areas;
Conference_Titel :
Network Operations and Management Symposium (NOMS), 2010 IEEE
Conference_Location :
Osaka
Print_ISBN :
978-1-4244-5366-5
Electronic_ISBN :
1542-1201
DOI :
10.1109/NOMS.2010.5488432