DocumentCode :
2692873
Title :
GPES: An algorithm for evolving hybrid kernel functions of Support Vector Machines
Author :
Phienthrakul, Tanasanee ; Kijsirikul, Boonserm
Author_Institution :
Chulalongkorn Univ., Bangkok
fYear :
2007
fDate :
25-28 Sept. 2007
Firstpage :
2636
Lastpage :
2643
Abstract :
The support vector machine (SVM) is a popular approach to the classification of data. One problem of SVM is how to choose a kernel and the parameters for the kernel. This paper proposes a classification technique, called GPES, that combines genetic programming (GP) and evolutionary strategies (ES) to evolve a hybrid kernel for an SVM classifier. The hybrid kernels are represented as trees that have some adjustable parameters. These hybrid kernels are also the Mercer´s kernels. The experimental results are compared with a standard SVM classifier using the polynomial and radial basis function kernels with various parameter settings.
Keywords :
genetic algorithms; pattern classification; polynomials; radial basis function networks; support vector machines; tree data structures; GPES; data classification; evolutionary strategies; genetic programming; hybrid kernel functions; polynomial kernels; radial basis function kernels; support vector machines; Evolutionary computation; Kernel; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2007. CEC 2007. IEEE Congress on
Conference_Location :
Singapore
Print_ISBN :
978-1-4244-1339-3
Electronic_ISBN :
978-1-4244-1340-9
Type :
conf
DOI :
10.1109/CEC.2007.4424803
Filename :
4424803
Link To Document :
بازگشت