DocumentCode :
2693570
Title :
Design for self-organizing fuzzy neural networks using a novel hybrid learning algorithm
Author :
Zhao, Liang ; Wang, Fei-Yue
Author_Institution :
Chinese Acad. of Sci., Beijing
fYear :
2007
fDate :
25-28 Sept. 2007
Firstpage :
2972
Lastpage :
2979
Abstract :
A novel hybrid learning algorithm to implement automatically structure identification and parameter optimization for designing a self-organizing TSK-Type fuzzy neural network (FNN) is proposed in this paper. It includes mean shift clustering algorithm (MSC) and mean firing strength method (MFS) which are employed to identify the network structure of fuzzy neural network (FNN) and the particle swarm optimization enhancing genetic algorithm (PSO-EGA) and the modified back-propagation algorithm (MBP) which are applied to learn the free parameters of it. That is, the MSC is used to partition the input vector space to generate initial network structure. Then the MFS is used to prune the least important rule neurons of initial structure and generate optimal network structure. After the structure identification is completed, the PSO-EGA is adopted to perform a global search in free parameter space of the FNN and seek a near- optimal initial free parameters point for the next stage. Then, it is considered as the initial weights of the FNN and the MBP is used to perform the learning process until a terminal condition is satisfied. The simulation experiment has verified that the proposed hybrid learning algorithm achieves superior performance in learning accuracy than those of some traditional methods.
Keywords :
backpropagation; fuzzy neural nets; genetic algorithms; particle swarm optimisation; genetic algorithm; hybrid learning algorithm; mean firing strength method; mean shift clustering algorithm; modified back-propagation algorithm; particle swarm optimization; self-organizing fuzzy neural networks; Algorithm design and analysis; Clustering algorithms; Clustering methods; Fuzzy neural networks; Fuzzy systems; Genetic algorithms; Neural networks; Neurons; Particle swarm optimization; Partitioning algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2007. CEC 2007. IEEE Congress on
Conference_Location :
Singapore
Print_ISBN :
978-1-4244-1339-3
Electronic_ISBN :
978-1-4244-1340-9
Type :
conf
DOI :
10.1109/CEC.2007.4424850
Filename :
4424850
Link To Document :
بازگشت