Title : 
Multi-sub-swarm particle swarm optimization algorithm for multimodal function optimization
         
        
            Author : 
Zhang, Jun ; Huang, De-Shuang ; Liu, Kun-Hong
         
        
            Author_Institution : 
Inst. of Intelligent Machines, Anhui
         
        
        
        
        
        
            Abstract : 
This paper presents a novel multi-sub-swarm particle swarm optimization (PSO) algorithm. The proposed algorithm can effectively imitate a natural ecosystem, in which the different sub-populations can compete with each other. After competing, the winner will continue to explore the original district, while the loser will be obliged to explore another district. Four benchmark multimodal functions of varying difficulty are used as test functions. The experimental results show that the proposed method has a stronger adaptive ability and a better performance for complicated multimodal functions with respect to other methods.
         
        
            Keywords : 
particle swarm optimisation; multimodal function optimization; multisub-swarm particle swarm optimization; natural ecosystem; sub-populations; Evolutionary computation; Particle swarm optimization;
         
        
        
        
            Conference_Titel : 
Evolutionary Computation, 2007. CEC 2007. IEEE Congress on
         
        
            Conference_Location : 
Singapore
         
        
            Print_ISBN : 
978-1-4244-1339-3
         
        
            Electronic_ISBN : 
978-1-4244-1340-9
         
        
        
            DOI : 
10.1109/CEC.2007.4424883