DocumentCode :
2697720
Title :
Construction and use of reproducing kernels for boundary and eigenvalue problems in the plane using pseudoanalytic function theory
Author :
Campos, Hugo M. ; Perez, Raul Castillo ; Kravchenko, Vladislav V.
Author_Institution :
Dept. of Math., CINVESTAV del IPN, Queretaro, Mexico
fYear :
2010
fDate :
6-8 Sept. 2010
Firstpage :
1
Lastpage :
5
Abstract :
We show how the Bergman-type reproducing kernels for the elliptic operator D = div pgrad+ q with variable coefficients defined in a bounded domain in the plane can be constructed using pseudoanalytic function theory and in particular pseudoanalytic formal powers. Under certain conditions on the coefficients p and q and with the aid of pseudoanalytic function theory a complete system of null solutions of the operator can be obtained following a simple algorithm consisting in recursive integration. Then the complete system of solutions is used for constructing the corresponding reproducing kernel. We study theoretical and numerical aspects of the method.
Keywords :
boundary-value problems; eigenvalues and eigenfunctions; electromagnetic field theory; elliptic equations; Bergman-type reproducing kernel; boundary problem; eigenvalue problem; elliptic operator; pseudoanalytic formal powers; pseudoanalytic function theory; recursive integration; variable coefficient; Boundary value problems; Eigenvalues and eigenfunctions; Electromagnetics; Equations; Kernel; Mathematical model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Mathematical Methods in Electromagnetic Theory (MMET), 2010 International Conference on
Conference_Location :
Kyiv
Print_ISBN :
978-1-4244-8859-9
Type :
conf
DOI :
10.1109/MMET.2010.5611413
Filename :
5611413
Link To Document :
بازگشت