Title :
Unsupervised classification of PolSAR images using eigenvector analysis, Krogager decomposition and the Wishart classifier
Author :
ZHOU, Xiao-guang ; Zhao, Li-wen ; Kuang, Gang-Yao ; Wan, Jian-wei
Author_Institution :
Coll. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha
Abstract :
In this paper, a new scheme for unsupervised classification of polarimetric synthetic aperture radar (PolSAR) images is presented. The method mainly consists of four parts: eigenvector analysis of the coherency (or covariance) matrix, Krogager decomposition, unsupervised classification using Krogager coefficients and scattering entropy, and iterative classification based on the Wishart distance measure. The method can classify the pixels into nine classes, and its effectiveness is demonstrated using the Jet Propulsion Laboratorypsilas AIRSAR and SIR-C/X-SAR L-band PolSAR data.
Keywords :
eigenvalues and eigenfunctions; image classification; radar imaging; radar polarimetry; synthetic aperture radar; AIRSAR; Jet Propulsion Laboratory; Krogager coefficients; Krogager decomposition; PolSAR images; SIR-C/X-SAR L-band PolSAR; Wishart classifier; Wishart distance measurement; coherency matrix; covariance matrix; eigenvector analysis; iterative classification; polarimetric synthetic aperture radar images; scattering entropy; unsupervised classification; Covariance matrix; Entropy; Image analysis; Iterative methods; L-band; Laboratories; Matrix decomposition; Polarimetric synthetic aperture radar; Propulsion; Radar scattering;
Conference_Titel :
Information and Automation, 2008. ICIA 2008. International Conference on
Conference_Location :
Changsha
Print_ISBN :
978-1-4244-2183-1
Electronic_ISBN :
978-1-4244-2184-8
DOI :
10.1109/ICINFA.2008.4607988