Title :
Classifying and tracking multiple persons for proactive surveillance of mass transport systems
Author :
Kong, Suyu ; Sanderson, C. ; Lovell, Brian C.
Author_Institution :
Univ. of Queensland, Brisbane
Abstract :
We describe a pedestrian classification and tracking system that is able to track and label multiple people in an outdoor environment such as a railway station. The features selected for appearance modelling are circular colour histograms for the hue and conventional colour histograms for the saturation and value components. We combine blob matching with a particle filter for tracking and augment these algorithms with colour appearance models to track multiple people in the presence of occlusion. In the object classification stage, hierarchical chamfer matching combined with particle filtering is applied to classify commuters in the railway station into several classes. Classes of interest include normal commuters, commuters with backpacks, commuters with suitcases, and mothers with their children.
Keywords :
feature extraction; image classification; image colour analysis; image matching; optical tracking; particle filtering (numerical methods); statistical analysis; surveillance; traffic engineering computing; appearance modelling; blob matching; circular colour histogram; conventional colour histogram; feature selection; hierarchical chamfer matching; mass transport system; occlusion; particle filter; pedestrian classification; pedestrian tracking; proactive surveillance; Australia; Filtering; Histograms; Humans; Intelligent systems; Matched filters; Particle filters; Particle tracking; Rail transportation; Surveillance;
Conference_Titel :
Advanced Video and Signal Based Surveillance, 2007. AVSS 2007. IEEE Conference on
Conference_Location :
London
Print_ISBN :
978-1-4244-1696-7
Electronic_ISBN :
978-1-4244-1696-7
DOI :
10.1109/AVSS.2007.4425303